1.  Pandas ๋ž€

๐Ÿฏ  pandas ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ : ํŒŒ์ด์ฌ์—์„œ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์ฒ˜๋ฆฌ๋ฅผ ์‰ฝ๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋„์™€์ค€๋‹ค
๐Ÿฏ  pandas๋Š” numpy๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งŒ๋“ค์–ด์กŒ์ง€๋งŒ ์ข€ ๋” ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„์— ํŠนํ™”
๐Ÿฏ  numpy๊ฐ€ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ํƒ€์ž…์˜ ๋ฐฐ์—ด๋งŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ ๋ฐ˜ํ•ด pandas๋Š” ๋ฐ์ดํ„ฐ ํƒ€์ž…์ด ๋‹ค์–‘ํ•˜๊ฒŒ ์„ž์—ฌ ์žˆ์„ ๋•Œ๋„ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ

 

    ๐Ÿ“Œ  ๊ณต์‹ ํ™ˆํŽ˜์ด์ง€ : https://pandas.pydata.org/

 

pandas - Python Data Analysis Library

pandas pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. Install pandas now!

pandas.pydata.org


2.  ๊ตฌ์กฐ์  ๋ฐ์ดํ„ฐ ์ƒ์„ฑํ•˜๊ธฐ

1) Series๋ฅผ ํ™œ์šฉํ•œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ

๐Ÿ‹  pandas์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฐฉ๋ฒ•์€ Series()๋ฅผ ์ด์šฉํ•˜๋Š” ๊ฒƒ
๐Ÿ‹  Series()๋ฅผ ์ด์šฉํ•˜๋ฉด Series ํ˜•์‹์˜ ๊ตฌ์กฐ์  ๋ฐ์ดํ„ฐ(๋ผ๋ฒจ์„ ๊ฐ–๋Š” 1์ฐจ์› ๋ฐ์ดํ„ฐ)๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Œ.

 

   ๐Ÿ“Œ  ๋‹ค์Œ์€ Series()๋ฅผ ์ด์šฉํ•ด Series ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•

s = pd.Series(seq_data)



๐Ÿ‹  Series()์˜ ์ธ์ž๋กœ๋Š” ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ๊ฐ€ ๋“ค์–ด๊ฐ
๐Ÿ‹  ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ๋กœ๋Š” ๋ฆฌ์ŠคํŠธ์™€ ํŠœํ”Œ ํƒ€์ž…์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์ฃผ๋กœ ๋ฆฌ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉ

import pandas as pd

s1 = pd.Series([10, 20, 30, 40, 50])
print(s1)
s1

 

 

๐Ÿ“Œ  ์œ„ ์ชฝ์˜ ๊ฒฐ๊ณผ๋Š” print(s1)์˜ ๊ฒฐ๊ณผ

      ์•„๋ž˜ ์ชฝ์˜ ๊ฒฐ๊ณผ๋Š” s1 ๋งŒ ์‹คํ–‰ํ–ˆ์„ ๋•Œ ์ถœ๋ ฅ๋˜๋Š” ๊ฒฐ๊ณผ (์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ์‚ฌ์šฉ )

 

 

 

 

 

 

 


s1 = pd.Series([10, 20, 30, 40, 50])
s1.index
# ์‹คํ–‰ ์ถœ๋ ฅ
# RangeIndex(start=0, stop=5, step=1)

s1.values

s1.values ๊ฒฐ๊ณผ

 

๐Ÿ‹  numpy์˜ ๊ฒฝ์šฐ ๋ฐฐ์—ด์˜ ๋ชจ๋“  ์›์†Œ๊ฐ€ ๋ฐ์ดํ„ฐ ํƒ€์ž…์ด ๊ฐ™์•„์•ผ ํ–ˆ์ง€๋งŒ pandas์˜ ๊ฒฝ์šฐ์—๋Š” ์›์†Œ์˜ ๋ฐ์ดํ„ฐ ํƒ€์ž…์ด ๋‹ฌ๋ผ๋„ ์ €์žฅ ๊ฐ€๋Šฅ

s2 = pd.Series(['a', 'b', 'c', 1, 2, 3])  # ๋„˜ํŒŒ์ด ์˜€๋‹ค๋ฉด ๋ชจ๋‘ ๋ฌธ์ž์—ด๋กœ ๋ณ€๊ฒฝ.
print(s2)
# 0    a
# 1    b
# 2    c
# 3    1
# 4    2
# 5    3
# dtype: object
# ๋ณ€์ˆ˜ s2์—๋Š” ๋ฌธ์ž์—ด๊ณผ ์ˆซ์ž๊ฐ€ ํ˜ผํ•ฉ์ด ๋˜์–ด ์žˆ์–ด์„œ ํƒ€์ž…์ด object

 


3) np.nan

๐Ÿ‹  ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์œผ๋ฉด numpy๋ฅผ ์ž„ํฌํŠธํ•œ ํ›„ np.nan์œผ๋กœ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Œ์„ ํ‘œ์‹œํ•  ์ˆ˜ ์žˆ์Œ

import numpy as np
s3 = pd.Series([np.nan, 10, 30])
print(s3)  
'''
์ถœ๋ ฅ๊ฒฐ๊ณผ)
0     NaN  -> ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ•œ ์ž๋ฆฌ index๋Š” ์žˆ์ง€๋งŒ ์‹ค์ œ ๊ฐ’์ด ์—†์Œ.
1    10.0
2    30.0
dtype: float64
'''

 

 

4) index

๐Ÿ‹   Series ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•  ๋•Œ ์ธ์ž๋กœ index ์ถ”๊ฐ€ ๊ฐ€๋Šฅ

         โ–ถ๏ธ  ์ธ์ž๋กœ index๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ž…๋ ฅํ•˜๋ฉด Series ๋ณ€์ˆ˜(s)์˜ index์—๋Š” ์ž๋™ ์ƒ์„ฑ๋˜๋Š” index ๋Œ€์‹  index_seq๊ฐ€ ๋“ค์–ด๊ฐ€๊ฒŒ ๋จ

         โ–ถ๏ธ  index_seq๋„ ๋ฆฌ์ŠคํŠธ์™€ ํŠœํ”Œ ํƒ€์ž…์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉ๊ฐ€๋Šฅํ•˜์ง€๋งŒ ์ฃผ๋กœ ๋ฆฌ์ŠคํŠธ๋ฅผ ์‚ฌ์šฉ

         โ–ถ๏ธ ์ฃผ์˜ํ•  ์ ์€ seq_data์˜ ํ•ญ๋ชฉ ๊ฐœ์ˆ˜์™€ index_seq์˜ ํ•ญ๋ชฉ ๊ฐœ์ˆ˜๊ฐ€ ๊ฐ™์•„์•ผ ํ•จ

s = pd.Series(seq_data, index = index_seq)
# ์–ด๋Š ๊ฐ€๊ฒŒ์˜ ๋‚ ์งœ๋ณ„ ํŒ๋งค๋Ÿ‰์„ pandas์˜ Series ํ˜•์‹์œผ๋กœ ์ž…๋ ฅ. ํ•˜๋ฃจ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์–ด์„œ np.nan์„ ์ž…๋ ฅ
index_data = ['2018-10-07', '2018-10-08', '2018-10-09', '2018-10-10']
s4 = pd.Series([200, 195, np.nan, 205], index=index_data)
s4

s4 ์‹คํ–‰๊ฒฐ๊ณผ

s4.index
# Index(['2018-10-07', '2018-10-08', '2018-10-09', '2018-10-10'], dtype='object')

 

 

๐Ÿ‹  ํŒŒ์ด์ฌ์˜ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ฐ์ดํ„ฐ์™€ index๋ฅผ ํ•จ๊ป˜ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์Œ

        โ–ถ๏ธ  ์ž…๋ ฅ ์ธ์ž๋กœ ๋”•์…”๋„ˆ๋ฆฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ•˜๋ฉด ๋”•์…”๋„ˆ๋ฆฌ ๋ฐ์ดํ„ฐ์˜ ํ‚ค key์™€ ๊ฐ’ value์ด ๊ฐ๊ฐ Series ๋ฐ์ดํ„ฐ์˜ index์™€ values๋กœ ๋“ค์–ด๊ฐ

s = pd.Series(dict_data)
s5 = pd.Series({'๊ตญ์–ด': 100, '์˜์–ด': 95, '์ˆ˜ํ•™': 90})
s5
'''
๊ตญ์–ด,100
์˜์–ด,95
์ˆ˜ํ•™,90
'''

 

3. ๋‚ ์งœ ์ž๋™ ์ƒ์„ฑ : data_range()

 

๐Ÿš€  ์ž…๋ ฅํ•ด์•ผ ํ•  ๋‚ ์งœ๊ฐ€ ๋งŽ์œผ๋ฉด pandas์—์„œ ๋‚ ์งœ๋ฅผ ์ž๋™์ƒ์„ฑํ•˜๋Š” data_range() ์‚ฌ์šฉ
๐Ÿš€  ๋ช‡ ๊ฐ€์ง€ ์„ค์ •๋งŒ ํ•˜๋ฉด ์›ํ•˜๋Š” ๋‚ ์งœ๋ฅผ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•˜๋ฏ€๋กœ ๋‚ ์งœ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ•  ๋•Œ ํŽธ๋ฆฌ

 

pd.date_range(start=None, end=None, periods=None, freq='D'


    ๐Ÿ‘พ  start๋Š” ์‹œ์ž‘๋‚ ์งœ, end๋Š” ๋๋‚ ์งœ
    ๐Ÿ‘พ  periods๋Š” ๋‚ ์งœ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๊ธฐ๊ฐ„ = ์ƒ์„ฑ ๊ฐฏ์ˆ˜
    ๐Ÿ‘พ  freq๋Š” ๋‚ ์งœ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์ฃผ๊ธฐ
    ๐Ÿ‘พ  start๋Š” ํ•„์ˆ˜์ด๊ณ , end๋‚˜ periods๋Š” ๋‘˜ ์ค‘ ํ•˜๋‚˜๋งŒ ์žˆ์–ด๋„ ๋จ
    ๐Ÿ‘พ  freq๋Š” ์ž…๋ ฅํ•˜์ง€ ์•Š์œผ๋ฉด 'D' ์˜ต์…˜์ด ์„ค์ •๋ผ ๋‹ฌ๋ ฅ๋‚ ์งœ ๊ธฐ์ค€์œผ๋กœ ํ•˜๋ฃจ์”ฉ ์ฆ๊ฐ€

# ์‹œ์ž‘ ๋‚ ์งœ์™€ ๋ ๋‚ ์งœ๋ฅผ ์ง€์ •ํ•ด ๋‚ ์งœ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑ. ํ•˜๋ฃจ์”ฉ ์ฆ๊ฐ€ํ•œ ๋‚ ์งœ ๋ฐ์ดํ„ฐ๊ฐ€ ์ƒ์„ฑ.
pd.date_range(start='2019-01-01', end='2019-01-07')
'''
DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04',
               '2019-01-05', '2019-01-06', '2019-01-07'],
              dtype='datetime64[ns]', freq='D')
'''

 


 

1) ๋‚ ์งœ ๋ฐ์ดํ„ฐ ํ˜•์‹

 

๐Ÿš€  ๋‚ ์งœ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ•  ๋•Œ yyyy-mm-dd  yyyy/mm/dd, yyyy.mm.dd, mm-dd-yyyy, mm/dd/yyyy, mm.dd.yyyy 

      ํ˜•์‹ ์‚ฌ์šฉ๊ฐ€๋Šฅ
        โ–ถ๏ธ ๋Œ€์‹  ์ถœ๋ ฅ์€ yyyy-mm-dd ํ˜•์‹์œผ๋กœ ์ƒ์„ฑ

pd.date_range(start='2019/01/01', end='2019.01.07')
'''
DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04',
               '2019-01-05', '2019-01-06', '2019-01-07'],
              dtype='datetime64[ns]', freq='D')
'''

pd.date_range(start='2019-01-01', end='01.07.2019')
'''
DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04',
               '2019-01-05', '2019-01-06', '2019-01-07'],
              dtype='datetime64[ns]', freq='D')
'''

# ๋ ๋‚ ์งœ๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š๊ณ  periods๋งŒ ์ž…๋ ฅํ•ด์„œ ๋‚ ์งœ ์ƒ์„ฑ.
pd.date_range(start='2019-01-01', periods=7)
'''
DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04',
               '2019-01-05', '2019-01-06', '2019-01-07'],
              dtype='datetime64[ns]', freq='D')
'''

 


 

2)  pandas data_range() ํ•จ์ˆ˜์˜ freq ์˜ต์…˜

์•ฝ์–ด ์„ค๋ช… ์‚ฌ์šฉ  ์˜ˆ
D ๋‹ฌ๋ ฅ ๋‚ ์งœ ๊ธฐ์ค€ ํ•˜๋ฃจ ์ฃผ๊ธฐ ํ•˜๋ฃจ ์ฃผ๊ธฐ: freq = 'D',  ์ดํ‹€ ์ฃผ๊ธฐ: freq = '2D'
B ์—…๋ฌด ๋‚ ์งœ ๊ธฐ์ค€ ํ•˜๋ฃจ ์ฃผ๊ธฐ ์—…๋ฌด์ผ(์›”~๊ธˆ) ๊ธฐ์ค€์œผ๋กœ ์ƒ์„ฑ, freq = 'B',  freq = '3B'
W ์ผ์š”์ผ ์‹œ์ž‘ ๊ธฐ์ค€ ์ผ์ฃผ์ผ ์ฃผ๊ธฐ ์›”์š”์ผ: W-MON, ํ™”์š”์ผ: W-TUE, freq = 'W',
freq = 'W-MON'
M ์›”๋ง ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ ํ•œ ๋‹ฌ ์ฃผ๊ธฐ: freq = 'M', ๋„ค ๋‹ฌ ์ฃผ๊ธฐ: freq = '4M'
BM ์—…๋ฌด ์›”๋ง ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'BM' , freq = '2BM'
MS ์›”์ดˆ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'MS' , freq = '2MS'
BMS ์—…๋ฌด ์›”์ดˆ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'BMS' , freq = '2BMS'
Q ๋ถ„๊ธฐ ๋ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'Q' , freq = '2Q'
BQ ์—…๋ฌด ๋ถ„๊ธฐ ๋ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'BQ' , freq = '2BQ'
QS ๋ถ„๊ธฐ ์‹œ์ž‘ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'QS' , freq = '2QS'
BQS ์—…๋ฌด ๋ถ„๊ธฐ ์‹œ์ž‘ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'BQS' , freq = '2BQS'
A ์ผ๋…„ ๋ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'A' , freq = '2A'
BA ์—…๋ฌด ์ผ๋…„ ๋ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'BA' , freq = '2BA'
AS ์ผ๋…„ ์‹œ์ž‘ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'AS' , freq = '2AS'
BAS ์—…๋ฌด ์ผ๋…„ ์‹œ์ž‘ ๋‚ ์งœ ๊ธฐ์ค€ ์ฃผ๊ธฐ freq = 'BAS' , freq = '2BAS'
H ์‹œ๊ฐ„ ๊ธฐ์ค€ ์ฃผ๊ธฐ 1์‹œ๊ฐ„ ์ฃผ๊ธฐ: freq = 'H' , 2์‹œ๊ฐ„ ์ฃผ๊ธฐ: freq = '2H'
BH ์—…๋ฌด ์‹œ๊ฐ„ ๊ธฐ์ค€ ์ฃผ๊ธฐ ์—…๋ฌด ์‹œ๊ฐ„(09:00 ~ 17:00) ๊ธฐ์ค€์œผ๋กœ ์ƒ์„ฑ
T, min ๋ถ„ ์ฃผ๊ธฐ 10๋ถ„ ์ฃผ๊ธฐ: freq = '10T' , 30๋ถ„ ์ฃผ๊ธฐ: freq = '30min'
S ์ดˆ ์ฃผ๊ธฐ 1์ดˆ ์ฃผ๊ธฐ: freq = 'S' , 10์ดˆ ์ฃผ๊ธฐ: freq = '10S'
# 2์ผ์”ฉ ์ฆ๊ฐ€ํ•˜๋Š” ๋‚ ์งœ๋ฅผ ์ƒ์„ฑ
pd.date_range(start='2019-01-01', periods=4, freq='2D')
# DatetimeIndex(['2019-01-01', '2019-01-03', '2019-01-05', '2019-01-07'], 
# dtype='datetime64[ns]', freq='2D')

 

# ๋‹ฌ๋ ฅ์˜ ์š”์ผ์„ ๊ธฐ์ค€์œผ๋กœ ์ผ์ฃผ์ผ์”ฉ ์ฆ๊ฐ€ํ•˜๋Š” ๋‚ ์งœ๋ฅผ ์ƒ์„ฑ.
pd.date_range(start='2019-01-06', periods=4, freq='W')
# DatetimeIndex(['2019-01-06', '2019-01-13', '2019-01-20', '2019-01-27'], 
# dtype='datetime64[ns]', freq='W-SUN')
# ์—…๋ฌด์ผ ๊ธฐ์ค€ 2๊ฐœ์›” ์›”๋ง ์ฃผ๊ธฐ๋กœ 12๊ฐœ ๋‚ ์งœ๋ฅผ ์ƒ์„ฑ.
pd.date_range(start='2019-01-01', periods=12, freq='2BM')
'''
DatetimeIndex(['2019-01-31', '2019-03-29', '2019-05-31', '2019-07-31',
               '2019-09-30', '2019-11-29', '2020-01-31', '2020-03-31',
               '2020-05-29', '2020-07-31', '2020-09-30', '2020-11-30'],
                dtype='datetime64[ns]', freq='2BM'
'''

 

# ๋ถ„๊ธฐ ์‹œ์ž‘์ผ์„ ๊ธฐ์ค€์œผ๋กœ 4๊ฐœ์˜ ๋‚ ์งœ๋ฅผ ์ƒ์„ฑ
pd.date_range(start='2019-01-01', periods=4, freq='QS')
# DatetimeIndex(['2019-01-01', '2019-04-01', '2019-07-01', '2019-10-01'], 
# dtype='datetime64[ns]', freq='QS-JAN')

 


 

[ ์‹œ๊ฐ„ ์ƒ์„ฑ ]

# 1์‹œ๊ฐ„ ์ฃผ๊ธฐ๋กœ 10๊ฐœ์˜ ์‹œ๊ฐ„์„ ์ƒ์„ฑํ•œ ์˜ˆ
pd.date_range(start='2019-01-01 08:00', periods=10, freq='H')
'''
DatetimeIndex(['2019-01-01 08:00:00', '2019-01-01 09:00:00',
               '2019-01-01 10:00:00', '2019-01-01 11:00:00',
               '2019-01-01 12:00:00', '2019-01-01 13:00:00',
               '2019-01-01 14:00:00', '2019-01-01 15:00:00',
               '2019-01-01 16:00:00', '2019-01-01 17:00:00'],
              dtype='datetime64[ns]', freq='H')
'''
# ์—…๋ฌด ์‹œ๊ฐ„์„ ๊ธฐ์ค€์œผ๋กœ 1์‹œ๊ฐ„ ์ฃผ๊ธฐ๋กœ 10๊ฐœ์˜ ์‹œ๊ฐ„์„ ์ƒ์„ฑํ•˜๋Š” ์˜ˆ
# ์—…๋ฌด ์‹œ๊ฐ„์€ 9์‹œ ๋ถ€ํ„ฐ 17์‹œ๊นŒ์ง€์ด๋ฏ€๋กœ start์‹œ๊ฐ„์„ 9์‹œ ์ด์ „์œผ๋กœ ์„ค์ •ํ•ด๋„ 9์‹œ ๋ถ€ํ„ฐ ํ‘œ์‹œ.
pd.date_range(start='2019-01-01 08:00', periods=10, freq='BH')
'''
DatetimeIndex(['2019-01-01 09:00:00', '2019-01-01 10:00:00',
               '2019-01-01 11:00:00', '2019-01-01 12:00:00',
               '2019-01-01 13:00:00', '2019-01-01 14:00:00',
               '2019-01-01 15:00:00', '2019-01-01 16:00:00',
               '2019-01-02 09:00:00', '2019-01-02 10:00:00'],
              dtype='datetime64[ns]', freq='BH')
'''
# date_range()๋ฅผ ์ด์šฉํ•ด Series์˜ index๋ฅผ ์ง€์ •ํ•œ ์˜ˆ.
index_date = pd.date_range(start='2019-03-01', periods=5, freq='D')
s = pd.Series([51, 62, 55, 49, 58], index=index_date)
s
'''
2019-03-01,51
2019-03-02,62
2019-03-03,55
2019-03-04,49
2019-03-05,58
'''

 

 

 

 

[ ๋‚ด์šฉ ์ฐธ๊ณ : IT ํ•™์› ๊ฐ•์˜ ]

+ Recent posts